Reverse mathematics and Isbell's zig-zag theorem
نویسنده
چکیده
منابع مشابه
Limit Theorems for the Zig - Zag Process Joris
Markov chain Monte Carlo methods provide an essential tool in statistics for sampling from complex probability distributions. While the standard approach to MCMC involves constructing discrete-time reversible Markov chains whose transition kernel is obtained via the Metropolis-Hastings algorithm, there has been recent interest in alternative schemes based on piecewise deterministic Markov proce...
متن کاملParallel & scalable zig-zag persistent homology
By computing repeated pullbacks, we are able to compute zig-zag persistent homology in a way that easily parallelizes. In this paper, we demonstrate this algorithm together with its underlying mathematical foundation. We can parallelize and scale the computation scheme.
متن کاملOn Construction of Almost-Ramanujan Graphs
Reingold et al. introduced the notion zig-zag product on two different graphs, and presented a fully explicit construction of dregular expanders with the second largest eigenvalue O(d−1/3). In the same paper, they ask whether or not the similar technique can be used to construct expanders with the second largest eigenvalue O(d−1/2). Such graphs are called Ramanujan graphs. Recently, zig-zag pro...
متن کاملTheoretical and Experimental Investigation of Optical Properties of ZnS Zig-Zag Thin Films
Zigzag ZnS thin films prepared by thermal evaporation method using glancing angle deposition (GLAD) technique. ZnS films with zigzag structure were produced at deposition angles of 0˚, 60˚ and 80˚ at room temperature on glass substrates. Surface morphology of the films w:as char:acterized by using field emission scanning electron microscopy (FESEM). The optical properties of the specimens were i...
متن کاملTesting Conductance in General Graphs
In this paper, we study the problem of testing the conductance of a given graph in the general graph model. Given distance parameter ε and any constant σ > 0, there exists a tester whose running time isO( (1+σ)/2·logn·log ε ε·Φ2 ), where n is the number of vertices andm is the number of edges of the input graph. With probability at least 2/3, the tester accepts all graphs of conductance at leas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Log. Q.
دوره 60 شماره
صفحات -
تاریخ انتشار 2014